Copied to
clipboard

G = C23×D11order 176 = 24·11

Direct product of C23 and D11

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C23×D11, C11⋊C24, C22⋊C23, (C22×C22)⋊3C2, (C2×C22)⋊4C22, SmallGroup(176,41)

Series: Derived Chief Lower central Upper central

C1C11 — C23×D11
C1C11D11D22C22×D11 — C23×D11
C11 — C23×D11
C1C23

Generators and relations for C23×D11
 G = < a,b,c,d,e | a2=b2=c2=d11=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 644 in 134 conjugacy classes, 83 normal (5 characteristic)
C1, C2, C2, C22, C22, C23, C23, C11, C24, D11, C22, D22, C2×C22, C22×D11, C22×C22, C23×D11
Quotients: C1, C2, C22, C23, C24, D11, D22, C22×D11, C23×D11

Smallest permutation representation of C23×D11
On 88 points
Generators in S88
(1 54)(2 55)(3 45)(4 46)(5 47)(6 48)(7 49)(8 50)(9 51)(10 52)(11 53)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 71)(28 72)(29 73)(30 74)(31 75)(32 76)(33 77)(34 78)(35 79)(36 80)(37 81)(38 82)(39 83)(40 84)(41 85)(42 86)(43 87)(44 88)
(1 43)(2 44)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 23)(13 24)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(21 32)(22 33)(45 78)(46 79)(47 80)(48 81)(49 82)(50 83)(51 84)(52 85)(53 86)(54 87)(55 88)(56 67)(57 68)(58 69)(59 70)(60 71)(61 72)(62 73)(63 74)(64 75)(65 76)(66 77)
(1 21)(2 22)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(11 20)(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(45 56)(46 57)(47 58)(48 59)(49 60)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)(67 78)(68 79)(69 80)(70 81)(71 82)(72 83)(73 84)(74 85)(75 86)(76 87)(77 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 53)(2 52)(3 51)(4 50)(5 49)(6 48)(7 47)(8 46)(9 45)(10 55)(11 54)(12 62)(13 61)(14 60)(15 59)(16 58)(17 57)(18 56)(19 66)(20 65)(21 64)(22 63)(23 73)(24 72)(25 71)(26 70)(27 69)(28 68)(29 67)(30 77)(31 76)(32 75)(33 74)(34 84)(35 83)(36 82)(37 81)(38 80)(39 79)(40 78)(41 88)(42 87)(43 86)(44 85)

G:=sub<Sym(88)| (1,54)(2,55)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88), (1,43)(2,44)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(45,78)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,67)(57,68)(58,69)(59,70)(60,71)(61,72)(62,73)(63,74)(64,75)(65,76)(66,77), (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,45)(10,55)(11,54)(12,62)(13,61)(14,60)(15,59)(16,58)(17,57)(18,56)(19,66)(20,65)(21,64)(22,63)(23,73)(24,72)(25,71)(26,70)(27,69)(28,68)(29,67)(30,77)(31,76)(32,75)(33,74)(34,84)(35,83)(36,82)(37,81)(38,80)(39,79)(40,78)(41,88)(42,87)(43,86)(44,85)>;

G:=Group( (1,54)(2,55)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88), (1,43)(2,44)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(45,78)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,67)(57,68)(58,69)(59,70)(60,71)(61,72)(62,73)(63,74)(64,75)(65,76)(66,77), (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,45)(10,55)(11,54)(12,62)(13,61)(14,60)(15,59)(16,58)(17,57)(18,56)(19,66)(20,65)(21,64)(22,63)(23,73)(24,72)(25,71)(26,70)(27,69)(28,68)(29,67)(30,77)(31,76)(32,75)(33,74)(34,84)(35,83)(36,82)(37,81)(38,80)(39,79)(40,78)(41,88)(42,87)(43,86)(44,85) );

G=PermutationGroup([[(1,54),(2,55),(3,45),(4,46),(5,47),(6,48),(7,49),(8,50),(9,51),(10,52),(11,53),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,71),(28,72),(29,73),(30,74),(31,75),(32,76),(33,77),(34,78),(35,79),(36,80),(37,81),(38,82),(39,83),(40,84),(41,85),(42,86),(43,87),(44,88)], [(1,43),(2,44),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,23),(13,24),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(21,32),(22,33),(45,78),(46,79),(47,80),(48,81),(49,82),(50,83),(51,84),(52,85),(53,86),(54,87),(55,88),(56,67),(57,68),(58,69),(59,70),(60,71),(61,72),(62,73),(63,74),(64,75),(65,76),(66,77)], [(1,21),(2,22),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(11,20),(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(45,56),(46,57),(47,58),(48,59),(49,60),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66),(67,78),(68,79),(69,80),(70,81),(71,82),(72,83),(73,84),(74,85),(75,86),(76,87),(77,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,53),(2,52),(3,51),(4,50),(5,49),(6,48),(7,47),(8,46),(9,45),(10,55),(11,54),(12,62),(13,61),(14,60),(15,59),(16,58),(17,57),(18,56),(19,66),(20,65),(21,64),(22,63),(23,73),(24,72),(25,71),(26,70),(27,69),(28,68),(29,67),(30,77),(31,76),(32,75),(33,74),(34,84),(35,83),(36,82),(37,81),(38,80),(39,79),(40,78),(41,88),(42,87),(43,86),(44,85)]])

C23×D11 is a maximal subgroup of   C22⋊D44  C23⋊D22
C23×D11 is a maximal quotient of   D46D22  Q8.10D22  D48D22  D4.10D22

56 conjugacy classes

class 1 2A···2G2H···2O11A···11E22A···22AI
order12···22···211···1122···22
size11···111···112···22···2

56 irreducible representations

dim11122
type+++++
imageC1C2C2D11D22
kernelC23×D11C22×D11C22×C22C23C22
# reps1141535

Matrix representation of C23×D11 in GL4(𝔽23) generated by

22000
0100
0010
0001
,
1000
02200
0010
0001
,
22000
02200
00220
00022
,
1000
0100
0001
002210
,
1000
02200
0001
0010
G:=sub<GL(4,GF(23))| [22,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,22,0,0,0,0,1,0,0,0,0,1],[22,0,0,0,0,22,0,0,0,0,22,0,0,0,0,22],[1,0,0,0,0,1,0,0,0,0,0,22,0,0,1,10],[1,0,0,0,0,22,0,0,0,0,0,1,0,0,1,0] >;

C23×D11 in GAP, Magma, Sage, TeX

C_2^3\times D_{11}
% in TeX

G:=Group("C2^3xD11");
// GroupNames label

G:=SmallGroup(176,41);
// by ID

G=gap.SmallGroup(176,41);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-11,4004]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^11=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽